22 research outputs found

    Hoe nauwkeurig zijn cup-anemometers?

    Get PDF

    Harvesting graphics power for MD simulations

    Get PDF
    We discuss an implementation of molecular dynamics (MD) simulations on a graphic processing unit (GPU) in the NVIDIA CUDA language. We tested our code on a modern GPU, the NVIDIA GeForce 8800 GTX. Results for two MD algorithms suitable for short-ranged and long-ranged interactions, and a congruential shift random number generator are presented. The performance of the GPU's is compared to their main processor counterpart. We achieve speedups of up to 80, 40 and 150 fold, respectively. With newest generation of GPU's one can run standard MD simulations at 10^7 flops/$.Comment: 12 pages, 5 figures. Submitted to Mol. Si

    Telling good from bad news: ADHD differentially affects processing of positive and negative feedback during guessing.

    No full text
    Neuroimaging studies on ADHD suggest abnormalities in brain regions associated with decision-making and reward processing such as the anterior cingulate cortex (ACC) and orbitofrontal cortex. Recently, event-related potential (ERP) studies demonstrated that the ACC is involved in processing feedback signals during guessing and gambling. The resulting negative deflection, the 'feedback-related negativity' (FRN) has been interpreted as reflecting an error in reward prediction. In the present study, ERPs elicited by positive and negative feedback were recorded in children with ADHD and normal controls during guessing. 'Correct' and 'incorrect' guesses resulted in respectively monetary gains and losses. The FRN amplitude to losses was more pronounced in the ADHD group than in normal controls. Positive and negative feedback differentially affected long latency components in the ERP waveforms of normal controls, but not ADHD children. These later deflections might be related to further emotional or strategic processing. The present findings suggest an enhanced sensitivity to unfavourable outcomes in children with ADHD, probably due to abnormalities in mesolimbic reward circuits. In addition, further processing, such as affective evaluation and the assessment of future consequences of the feedback signal seems to be altered in ADHD. These results may further help understanding the neural basis of decision-making deficits in ADHD. © 2005 Elsevier Ltd. All rights reserved

    Adaptive control deficits in attention-deficit/hyperactivity disorder (ADHD): The role of error processing

    No full text
    Cognitive performance of children with attention-deficit hyperactivity disorder (ADHD) is characterized by large moment-to-moment fluctuations in cognitive control reflected by a highly inconsistent and inaccurate response style. It has been suggested that abnormal error processing underlies this failure to implement adequate control. We investigated the error-related negativity (ERN), a negative deflection in the event-related potential (ERP) time-locked to erroneous responses in 16 rigorously screened ADHD boys aged 8-12 years and 16 age-matched normal control boys during a modified Eriksen flanker paradigm with two levels of time pressure. Children with ADHD responded as fast and regularly as controls, but committed significantly more errors, particularly when facing time pressure and response conflict. ADHD children produced shorter runs of correct responses than controls. In addition, with high time pressure, error runs were prolonged relative to control children, suggesting an increase in both frequency and magnitude of temporary lapses of control. ERP amplitude differences between correct and incorrect responses were diminished in ADHD children, whereas post-error slowing remained unaffected. This pattern of results indicates that a specific deficit in monitoring ongoing behaviour, rather than insufficient strategic adjustments, gave rise to performance limitations in ADHD. Findings are discussed in terms of anterior cingulate cortex (ACC) dysfunction, leading to a failure to predict the likelihood that an error occurs in a given context. © 2007

    Does reward frequency or magnitude drive reinforcement-learning in ADHD?

    No full text
    Children with attention-deficit/hyperactivity disorder (ADHD) show an impaired ability to use feedback in the context of learning. A stimulus-response learning task was used to investigate whether (1) children with ADHD displayed flatter learning curves, (2) reinforcement-learning in ADHD was sensitive to either reward frequency, magnitude, or both, and (3) altered sensitivity to reward was specific to ADHD or would co-occur in a group of children with autism spectrum disorder (ASD). Performance of 23 boys with ADHD was compared with that of 30 normal controls (NCs) and 21 boys with ASD, all aged 8-12. Rewards were delivered contingent on performance and varied both in frequency (low, high) and magnitude (small, large). The findings showed that, although learning rates were comparable across groups, both clinical groups committed more errors than NCs. In contrast to the NC boys, boys with ADHD were unaffected by frequency and magnitude of reward. The NC group and, to some extent, the ASD group showed improved performance, when rewards were delivered infrequently versus frequently. Children with ADHD as well as children with ASD displayed difficulties in stimulus-response coupling that were independent of motivational modulations. Possibly, these deficits are related to abnormal reinforcement expectancy

    Heart rate and reinforcement sensitivity in ADHD

    Get PDF
    Background: Both theoretical and clinical accounts of attention-deficit/ hyperactivity disorder (ADHD) implicate a dysfunctional reinforcement system. This study investigated heart rate parameters in response to feedback associated with reward and response cost in ADHD children and controls aged 8 to 12. Methods: Heart rate responses (HRRs) following feedback and heart rate variability (HRV) in the low frequency band (.04-.08 Hz), a measure of mental effort, were calculated during a time production paradigm. Performance was coupled to monetary gain, loss or feedback-only in a cross-over design. Results: Children with ADHD exhibited smaller HRRs to feedback compared to controls. HRV of children with ADHD decreased when performance was coupled to reward or response cost compared to feedback-only. HRV of controls was similar across conditions. Conclusions: Children with ADHD were characterised by (a) possible abnormalities in feedback monitoring and (b) motivational deficits, when no external reinforcement is present. © 2007 The Authors Journal compilation 2007 Association for Child and Adolescent Mental Health
    corecore